1. Guo-Dong Zhao (赵国栋)
    1. Research Topics
    2. Skills
    3. Working Experience
    4. Educations
    5. Awards, et al.
    6. Publications

Guo-Dong Zhao (赵国栋)

Postdoc, Penn State University

[ResearchGate]
[Google Scholar]
Email: gbz5051@psu.edu

Research Topics

  1. Ferroelectric Switching Dynamics: The nature of HfO2 ferroelectrics from atomistic or multiscale simulations

    • [Preprint.v3] Polarization description of successive ferroelectric switching in hafnia (Ferroelectric hafnia as an intrinsic ionic conductor). G.-D. Zhao, X. Liu, Z. Xu, W. Ren, X. Zhu, D. Zhang, S. Yu, arXiv:2302.02874.

    • Symmetry of ferroelectric switching and domain walls in hafnium dioxide. G.-D. Zhao, X. Liu, W. Ren, X. Zhu, S. Yu, Phys. Rev. B 106, 064104 (2022). DOI: 10.1103/PhysRevB.106.064104

    • [NEW!] Oxygen Vacancies Stabilized 180◦ Charged Domain Walls in Ferroelectric Hafnium Oxide. Z. Xu, X. Zhu*, G.-D. Zhao*, D. W. Zhang, and S. Yu, Appl. Phys. Lett. 124, 012902 (2024). DOI: 10.1063/5.0179879

    • Recent progress of improper ferroelectricity in perovskite oxides (in Chinese). G.-D. Zhao, Y.-L. Yang, and W. Ren. ACTA PHYS SIN-CH ED, 41587 (2018). DOI: 10.7498/aps.67.20180936

  2. Low-Dimensional Magnetism: Monte Carlo with effective spin Hamiltonian, Ising-2DFM VI3, Janus-TMD, vdW-heterestructures, Dzyaloshinsky-Moriya interaction (DMI), Skyrmions

    • Difference in magnetic anisotropy of the ferromagnetic monolayers VI3 and CrI3 [PRBTopDownload]. G.-D. Zhao, X. Liu, T. Hu, F. Jia, Y. Cui, W. Wu, M.-H. Whangbo, and W. Ren. Phys. Rev. B 103, 014438 (2021). DOI: 10.1103/PhysRevB.103.014438

    • [NEW!] Hidden Valley Polarization, Piezoelectricity, and Dzyaloshinskii–Moriya Interactions of Janus Vanadium Dichalcogenides. G.-D. Zhao, W. Fu, Y. Li, X. Liu, F. Jia, T. Hu, and W. Ren. ACS Appl. Mater. Interfaces (2023). DOI: 10.1021/acsami.3c09270

  3. Quantum Transportation: spintronics, tunneling junctions

    • Modifying spin current filtering and magnetoresistance in a molecular spintronic device. G.-D. Zhao, L.-M. Li, Y. Wang, A. Stroppa, J.-H. Zhang, and W. Ren. RSC Adv., 41587 (2018). DOI: 10.1039/C8RA07343K

Skills

Working Experience

  • Oct 2023 - present, Pennsylvania State University (Penn State)

    Postdoc.

  • Jan 2021 - Jul 2023, Fudan University

    Postdoc.

Educations

  • Sep 2015 - Dec 2020, Shanghai University

    PhD - Condensed Matter Physics, Adv.: Wei Ren. [Thesis].

  • Sep 2011 - Jun 2015, Shanghai University

    BS - Applied Physics, Thesis Adv.: Chuanbing Cai.

Awards, et al.

Publications

Pub-Top & Intro

  1. [Preprint.v3] Polarization description of successive ferroelectric switching in hafnia (Ferroelectric hafnia as an intrinsic ionic conductor).
    G.-D. Zhao, X. Liu, Z. Xu, W. Ren, X. Zhu*, D. W. Zhang, S. Yu. arXiv:2302.02874.

    • Ferroelectric-HfO2 are discovered being an intrinsic ionic conductor.

    • Oxygen-ion conducting is mediated by a novel continuous ferroelectric switching mechanism, showing nesting domains and possible negative pizeoelectric response.

    • The corresponding ionic conductibility should follow Merz’s law.

    • A new form of free-energy model describing the potential of ferroelectrics with successive FE switching paths.

  2. [NEW!] Hidden Valley Polarization, Piezoelectricity, and Dzyaloshinskii–Moriya Interactions of Janus Vanadium Dichalcogenides.
    G.-D. Zhao, W. Fu, Y. Li, X. Liu, F. Jia, T. Hu*, and W. Ren*. ACS Appl. Mater. Interfaces (2023).

    • Janus V-TMDs have a very broken symmetry. We comprehensively studied the functional properties of Janus H-VXY (X, Y = S, Se, Te) monolayers: orbital occupation, XY-magnetism, OOP-Polarization, valley polarization, piezoelectricity, DMI, etc.
  3. [NEW!] Oxygen Vacancies Stabilized 180◦ Charged Domain Walls in Ferroelectric Hafnium Oxide.
    Z. Xu, X. Zhu*, G.-D. Zhao*, D. W. Zhang, and S. Yu, Appl. Phys. Lett. 124, 012902 (2024).

    • We proposed that oxygen vacancy is a crucial factor stabilizing head-to-head and tail-to-tail charged domain walls in periodic configurations.

    • We investigated corresponding polarization profiles, potential, and charge distributions in charged domain walls with a VO. We also calculated the energy barrier for layer-by-layer migration of a HH wall and carefully discussed the migration of a TT wall with VO.

  4. Symmetry of ferroelectric switching and domain walls in hafnium dioxide.
    G.-D. Zhao, X. Liu, W. Ren, X. Zhu*, S. Yu. Phys. Rev. B 106, 064104 (2022).

    • We introduce a general conceptual methodology of analyzing the symmetry of FE switching paths and domain walls in complex ferroelectric materials. Here for example in ferroelectric-HfO2, 4 low-barrier FE switching paths and 93 irreducible topology domain wall configurations are classified and analyzed.

    • Intrinsic anisotropic switching mechanism of HfO2 is inferred.

  5. Difference in magnetic anisotropy of the ferromagnetic monolayers VI3 and CrI3 [PRBTopDownload].
    G.-D. Zhao, X. Liu, T. Hu, F. Jia, Y. Cui, W. Wu, M.-H. Whangbo*, and W. Ren*. Phys. Rev. B 103, 014438 (2021).

    • On the basis of both first principles DFT calculations and theoretical analyses, we showed that VI3 monolayer is both ferromagnetic and uniaxial whereas CrI3 monolayer is ferromagnetic but is not uniaxial, and that the minimal model Hamiltonian to distinguish between VI3 and CrI3 monolayer is surprisingly a simple Hamiltonian containing only two parameters, namely, the nearest-neighbor spin exchange and the magnetic anisotropy of each magnetic ion.

    • Accurately predicted the Curie Temperature of monolayer VI3 (TC = 58~60 K). [Xiaodong Xu Group].

  6. Modifying spin current filtering and magnetoresistance in a molecular spintronic device.
    G.-D. Zhao, L.-M. Li, Y. Wang, A. Stroppa, J.-H. Zhang, and W. Ren*. RSC Adv. 41587 (2018).

    • Based on DFT-NEGF studies of zigzag edged graphene nanoribbon (ZGNR) molecular spintronic devices, we extensively explored ways to modify spin current filtering efficiency (SFE), magnetoresistance ratio (MR), and Rectifying ratio (RR) performances.
  7. Recent progress of improper ferroelectricity in perovskite oxides (in Chinese).
    G.-D. Zhao, Y.-L. Yang, and W. Ren*. ACTA PHYS SIN-CH ED, 41587 (2018).

    • We reviewed the research background and advances for impoper ferroelectricity in perovskite oxides, where ferroelectric polarization is a secondary order parameter induced by other orders.

Pub-Others

  1. Phase-Field Model of Electronic Antidoping.
    Y. Shi, G.-D. Zhao, I. Dabo, S. Ramanathan, L.-Q. Chen. Phys. Rev. Lett. 132, 256502 (2024)

  2. Structural and magnetic properties of two-dimensional layered BiFeO3 from first principles.
    C. Liu, G. Zhao, T. Hu, L. Bellaiche, and W. Ren. Phys. Rev. B 103, L081403 (2021).

  3. Ferromagnetism, Jahn-Teller effect, and orbital order in the two-dimensional monolayer perovskite Rb2CuCl4.
    C. Liu, G. Zhao, T. Hu, Y. Chen, S. Cao, L. Bellaiche, and W. Ren. Phys. Rev. B 104, L241105 (2021).

  4. Intrinsic ferromagnetism with high Curie temperature and strong anisotropy in a ferroelastic VX monolayer (X = P, As).
    X. Cheng, S. Xu, F. Jia, G. Zhao, M. Hu, W. Wu, and W. Ren. Phys. Rev. B 104, 104417 (2021).

  5. Two-dimensional charge density waves in TaX2 (X = S, Se, Te) from first principles.
    T. Jiang, T. Hu, G.-D. Zhao, Y. Li, S. Xu, C. Liu, Y. Cui, and W. Ren. Phys. Rev. B 104, 075147 (2021)].

  6. Two-dimensional multiferroics in a breathing kagome lattice.
    Y. Li, C. Liu, G.-D. Zhao, T. Hu, and W. Ren. Phys. Rev. B 104, L060405 (2021)].

  7. Tunable Magnetism and Insulator–Metal Transition in Bilayer Perovskites.
    S. Xu, F. Jia, G. Zhao, T. Hu, S. Hu, and W. Ren. J. Phys. Chem. C 125, 6157 (2021).

  8. A two-dimensional ferroelectric ferromagnetic half semiconductor in a VOF monolayer.
    S. Xu, F. Jia, G. Zhao, W. Wu, and W. Ren. J. Mater. Chem. C 9, 9130 (2021).

  9. A high-temperature quantum anomalous Hall effect in electride gadolinium monohalides.
    C. Chen, L. Fang, G. Zhao, X. Liu, J. Wang, L. A. Burton, Y. Zhang, and W. Ren. J. Mater. Chem. C 9, 9539 (2021).

  10. Manipulation of valley pseudospin in WSe2/CrI3 heterostructures by the magnetic proximity effect.
    T. Hu, G. Zhao, H. Gao, Y. Wu, J. Hong, A. Stroppa, and W. Ren. Phys. Rev. B 101, 125401 (2020).

  11. Structural and electronic properties of two-dimensional freestanding BaTiO3/SrTiO3 heterostructures.
    F. Jia, S. Xu, G. Zhao, C. Liu, and W. Ren. Phys. Rev. B 101, 144106 (2020).

  12. Persistent Spin-texture and Ferroelectric Polarization in 2D Hybrid Perovskite Benzylammonium Lead-halide.
    F. Jia, S. Hu, S. Xu, H. Gao, G. Zhao, P. Barone, A. Stroppa, and W. Ren. J. Phys. Chem. Lett. 11, 5177 (2020).

  13. First-principles prediction of a room-temperature ferromagnetic and ferroelastic 2D multiferroic MnNX (X = F, Cl, Br, and I).
    M. Hu, S. Xu, C. Liu, G. Zhao, J. Yu, and W. Ren. Nanoscale 12, 24237 (2020).

  14. Vertical ferroelectric switching by in-plane sliding of two-dimensional bilayer WTe2.
    X. Liu, Y. Yang, T. Hu, G. Zhao, C. Chen, and W. Ren. Nanoscale 11, 18575 (2019).

  15. Magnetic and electronic properties of Cr2Ge2Te6 monolayer by strain and electric-field engineering.
    K. Wang, T. Hu, F. Jia, G. Zhao, Y. Liu, I. V. Solovyev, A. P. Pyatakov, A. K. Zvezdin, and W. Ren. Appl. Phys. Lett. 114, 092405 (2019).

  16. Electronic transport of organic-inorganic hybrid perovskites from first-principles and machine learning.
    L. Li, Y. You, S. Hu, Y. Shi, G. Zhao, C. Chen, Y. Wang, A. Stroppa, and W. Ren. Appl. Phys. Lett. 114, 083102 (2019).

  17. First-principles studies of a two-dimensional electron gas at the interface of polar/polar LaAlO3/KNbO3 superlattices.
    L. Fang, C. Chen, Y. Yang, Y. Wu, T. Hu, G. Zhao, Q. Zhu, and W. Ren. Phys. Chem. Chem. Phys. 21, 8046 (2019).

  18. Intrinsic and anisotropic Rashba spin splitting in Janus transition-metal dichalcogenide monolayers.
    T. Hu, F. Jia, G. Zhao, J. Wu, A. Stroppa, and W. Ren. Phys. Rev. B 97, 235404 (2018).

  19. Allotropes of tellurium from first-principles crystal structure prediction calculations under pressure.
    Y. Liu, S. Hu, R. Caputo, K. Sun, Y. Li, G. Zhao, and W. Ren. RSC Adv. 8, 39650 (2018).

  20. Thickness Control of the Spin-Polarized Two-Dimensional Electron Gas in LaAlO3/BaTiO3 Superlattices.
    C. Chen, L. Fang, J. Zhang, G. Zhao, and W. Ren. Sci. Rep. 8, 467 (2018).

  21. Structural properties and strain engineering of a BeB2 monolayer from first-principles.
    F. Jia, Y. Qi, S. Hu, T. Hu, M. Li, G. Zhao, J. Zhang, A. Stroppa, and W. J. R. A. Ren. RSC Adv. 7, 38410 (2017).

Blogs: . Words: .

Visitors: . Visites: .